
I C A S E R E P O R T

A M I C R O P R O C E S S O R A R C H I T E C T U R E F O R

D I G I T A L D E V I C E I M P L E M E N T A T I O N

Thomas L. Boardriian, Jr.

R e p o r t N u m b e r 76-23

A u g u s t 12, 1976

(NASA-CR-185733) A HICROPROCESSOR
A R C H I T l X T U R E FOR D X G I l A L O E V I C E
XMPLEMfNTATION (I C A S F) 18 p

I N S T I T U T E FOR COMPUTER A P P L I C A T I O N S

I N SCIENCE AND ENGINEERING

O p e r a t e d by the

U N I V E R S I T I E S SPACE RESEARCH A S S O C I A T I O N

a t

N A S A ' s LANGLEY RESEARCH CENTER

Hampton, V i r g i n i a

N 8 9 - 7 1 3 3 4

unc 1 as
00160 0224342

A MICROPROCESSOR ARCHITECTURE FOR

DIGITAL DEVICE IMPLEMENTATION

Thomas L. Boardman, Jr.

University of Colorado

ABSTRACT

A microprocessor based architecture for the implementation of digital

logic devices is presented. The architecture facilitates replacement of

portions of the hard-wired logic chains within the device with groups of

microinstructions called kernels.

the processor simplifying interface problems such as buffering, interlocking,

and sequencing. This greatly reduces overall package count, power consump-

tion, system complexity, and therefore system debug time aild c o s t while

improving system flexibility with the programmable control store. A three

dimensional graphics display processor the the Tektronix 4014 terminal,

built using Intel 3000-series microprocessor elements, is discussed demon-

strating the viability and benefits of this architecture. Such processor

elements permit approximately 250,000 twenty microinstruction kernels to

be executed in place of hard-wired logic per second.

Multiple modules of a device may share

This report was prepared as a result of work performed under NASA
Contract No. NAS1-14101 while the author was in residence at ICASE, NASA
Langley Research Center, Hampton, VA 23665.

I. Introduction

The control of basic digital logic functions such as sequencing,

data flow, and arithmetic unit operation by bits in a programmable control

store is at least as old as the EDSAC I1 (1953). Until recently, however,

this microprogramming of logic functions served largely to improve system

design flexibility, not to reduce size, power consumption, cost, or improve

performance. The development of microprocessors using MSI and LSI techno-

logies has provided these additional benefits and therefore significantly

effected the digital logic design process (1).

Initial utilization of these microDrocessors (2) (3) (4) , centered

around the Intel 8080 and similar hundred thousand instruction Der second

processors, was characterized by replacement of large sections of digital

logic with serial execution of stored programs interfaced to the outside

world and internal SSI logic. Such utilization made products such as

:alculators, point of sale terminals, adaptive traffic control systems,

etc. economically feasible and will undoubtedly continue to represent a

major part of the intelligent device market. They are, however, limited

to applications requiring at most several thousand operations per second

since each operation must be implemented as a series of machine instructions.

Recent bipolar LSI technology has produced processors such as the

Intel 3000 and AM2900 series devices which are capable of executing

several million instructions per second.

of handling orders of magnitude faster applications, are multi-package

These processors, while capable

systems and therefore are not necessarily as cost or performance effective.

In addition, since their mdtipurpose nature demands many internal logic

levels between input and output, they can never completely duplicate the

performance characteristics of SSI logic.

This paper describes an architecture for the interconnection of such

bipolar microprocessors and SSI logic which can provide major logic

function unit replacement for low speed-requirement operations, minor

function replacement for higher speed-requirements, and direct logic

execution of time-critical operations. Examples of these modes include

matrix multiplication every several milliseconds (hundreds of instruc-

tions), multiple-bit shift or buffer push/pop every several microseconds

(several instructions), and bit serialization for disk transfers (hard-

wired logic).

11. System Architecture

The microprocessor system referenced herein as an example of the

architecture being presented was designed to support eight independent

logic devices such as disk units, communication lines, CRT's, and multiply-

divide units. It was implemented using Intel 3000 series microprocessor

elements with a sixteen-bit word size (eight two-bit arithmetic unit

slices) and a sixty-bit microinstruction word. Use of Intel components

and these specific field sizes should not be considered characteristics

or requirements of the basic architecture.

Whether it be along communication lines or wires etched in a single

circuit board, signals must be bussed between the processor and the

various devices of which it is a part. The seventy bus lines required

>* z
0

w

0

L

I -

co
4

C3

n z
clr w
2.
W

n
d
I-
4
c!
W o
> w
CI

U

W

J c z

0
0

z

I- o
W
J
W
v,

W
&X

3
!--

Y

Y

W
C Y

U

L L

-3-

~ by t h i s implementation are shown i n F igure 1. Th i r t een l i n e s ere used

I

f o r power d i s t r i b u t i o n and t iming s i g n a l s which are desc r ibed below.

Three l ines spec i fy which one of t h e e i g h t dev ices i s being s e l e c t e d

by a p a r t i c u l a r i n s t r u c t i o n . The fo l lowing e i g h t l i n e s a l low the devices

t o r eques t (i n t e r rup t) t h e processor f o r execut ion of s p e c i f i c groups

~

III. Processor-Device Communication

1 Conrmunication between t h e microprocessor and each of t h e dev ices ,

of logic-replacement mic ro ins t ruc t ions . The i n t e r r u p t s t r u c t u r e , which

makes t h e processor appear as a dedica ted s l a v e t o each device , i s a l s o des-

c r ibed below.

devices by i n i t i a t i n g t r a n s f e r s t o and from the processor and ope ra t ions

a t t h e v a r i o u s po in t s i n t h e device l o g i c cha in . The next s i x t e e n b i t s

provide a b i d i r e c t i o n a l d a t a bus f o r i n p u t s t o and ou tpu t s from t h e pro-

ces so r . F ina l ly , t he scra tchpad read-wr i te memory a s s o c i a t e d wi th t h e

processor and thereby a v a i l a b l e t o a l l devices is addressed and accessed

over a second b i d i r e c t i o n a l bus.

The fo l lowing fou r t een bus l ines are used t o c o n t r o l t h e

A s with most b i p o l a r microprocessors , t h e a r i t h m e t i c and processor

(next address c a l c u l a t i o n) func t ions are performed by s e p a r a t e ch ips wi th in

t h e I n t e l 3000 family.

ch ips .

i n s t r u c t i o n .

w i l l n o t be described i n d e t a i l . Others w i l l be re ferenced i n t h e more

d e t a i l e d d e s c r i p t i o n of t h e processor implementation which fo l lows .

F igure 2 shows t h e s p e c i f i c conf igu ra t ion of t hese

F igure 3 l ists t h e va r ious f i e l d s which make up t h e s i x t y - b i t micro-

Many of t hese a r e s p e c i f i c t o t h e 3000-series elements and

which occurs across the seventy- l ine bus desc r ibed above, i s c o n t r o l l e d

by t h e t iming s i g n a l s shown i n F igure 4 . The system i s d r iven by a s i n g l e

-4-

I

I I 7

,

r l

n
v,
W
0

v,

I-

E3
I cv

C(

C(

W

v,
I-
v,
W
3 c
W

w
0

>
W

U

a

i

cv
M

-5-

W
J

IA
J
F9 <
v,
k
H

L

M a:
v)
H

0

t-

3

0
c

H

L- ~

T

H

z
w l -
k -
L

Y

c

c
5 c

z c

I- z
c2 o

c

m
J
W

n

H

t- o
3 oc:

M
W w
3
c3

L
H

0
H

L r
4

k
L
c,
0

W
0

W cn
W u

-6-

- e--

. .

I
I

L

i 1 c i

I - c
-

i 71
1

z
0

x u
c!
J u I u

L c o c a
3 25
m w

c3
W a 4

- 7-

twenty megahertz CLOCK to insure that the devices and processor remain

synchronized.

An individual microinstruction begins execution with the leading

edge of the CPU CLOCK.

the processor chip requiring approximately fifty nanoseconds.

address is calculated, it is presented to the (60-bit wide) microinstruc-

tion memory and the instruction is fetched. This requires sixty nano-

seconds for the memory used in this implementation. At the same time,

the bidirectional busses are switched to provide input from the devices

and scratchpad memory to the arithmetic unit bit-slices. A s the instruction

is being fetched, an E h i CYCLE pulse is sent out terminating execution

of the previous instruction. Although all devices receive this signal,

it means only that they must relinquish the bus and access to the processor.

Internal logic chains and interaction with their external devices may

continue.

This initiates the next address calculation in

Once the

Once fetched, a portion of the microinstruction is LATCHED to permit

overlapping of this instruction with the next instruction fetch. The

remainder of the instruction is presented to the processor elements directly

and to the devices over the bus as indicated in Figure 1. The new instruc-

tion is then initiated with the BEGIN CYCLE pulse causing a specific

device indicated in the instruction word t o be selected. If requested

bv the appropriate control bits, the device immediately places data on

the bus as input to the arithmetic units. After a settling time, the

falling edge of the CPU CLOCK initiates execution of the microinstruction

specified in the instruction word. As indicated, the arithmetic unit has

access to both device data and memory data for that execution.

After approximately fifty nanoseconds, the results of the arithmetic

.

-8-

unit execution are sent to the device selected and to memory as the BUS

DIRECTION is reversed.

cycle is extended until the memory signals it is complete.

the CPU CLOCK rises immediately and the microinstruction execution process

If this is a memory reference instruction, the

Otherwise,

is repeated beginning with the next address calculation.

Notice that the device can specify input to the arithmetic unit, wait

for it to be processed, read the result, and perhaps read a resulting value

from memory (since the bidirectional busses again reverse) before the END

CYCLE pulse terminates the instruction.

characteristic of the arthitecture since most processors permit only read

device, or write device, or access memory on a single cycle. In the class

of interfacing problems for which this architecture was intended:

process, and write operations are very common.

This represents a significant

read,

I\'. System Interrupt Structure

The previous section described the event sequence for the execution of

a single instruction. Since the next address opcode is part of each micro-

instruction (Figure 3) , sequential execution of instructions is unnecessary.

Groups of microinstructions required to perform a specific function can,

however, be thought of as logically sequential kernels. These kernels perform

operations for the digital devices to which the processor is connected ranging

from single instruction shift operations to complex operations such as a

matrix multiplication requiring scores of instructions.

To maximize the usefulness of the microprocessor to the individual

devices, execution of these kernels must be possible at any point in a

devise's logic chain. The hardware interrupt structure provides this

capability. In parallel with the execution of each instruction, the

interrupt logic shown in Figure 5 monitors requests coming across the bus

-9-

II
L

3
7

-
2 c- o

t
n

W
Ez
v

-

i

t-
w v ?
o w

, i

-10-

from all (eight) devices. At the point in the execution cycle immediately

after the processor has computed the next address, the highest priority

request is compared against the priority (number) of the device currently

selected. If the requesting device is of higher priority, the computed

next address is optionally stored in scratchpad memory and an instruction

dedicated to handling interrupts from the requesting device is fetched.

The fetched interrupt handling instruction causes the contents of

a scratchpad memory location (interrupt vector) dedicated to the inter-

rupting device to be read, and branches to an instruction common to all

device interrupt handling.

which is the microprogram address to be executed next for that device,

into the processor so that it can be used as the next address executed,

as depicted in Figure 5. Processing (kernel execution) for the interrupting

device begins on the third instruction after the interrupt was received.

This second instruction copies the value read,

Any kernel can include instructions to change the contents of the

interrupt vector and therefore point to a new kernel to be executed following

the next interrupt from its device. This allows the processor to perform

widely varied tasks for a device at different points in its logic chain.

Since each microinstruction includes fourteen device control bits (Figure 3) ,

the processor can provide not only logic simulation but also sequencing

of the logic chains within the device.

Return from interrupts is handled by the same logic and procedure by

The end of each interrupt processing kernel is which they are initiated.

a branch to a NOP instruction of lowest priority.

is immediately interrupted by the previously interrupted kernel, its

interrupt vector is read, and that value becomes the next address executed.

Execution of this NOP

It was mentioned above that the next address calculated immediately

-11-

before an interrupt (return address) is optionally stored in the interrupt

vector for that device. If the option is not invoked (as specified by a

bit in the microinstruction word shown in Figure 3) , the address is not

stored and the return procedure will reinitiate execution at the point

previously set in this vector address. This will typically cause re-

execution of some instructions. It allows, however, general purpose

arithmetic unit registers to be used without fear of their being altered

between execution of instructions within a kernel since those instructions

will be re-executed if an interrupt does occur. This represents another

significant characteristic of the architecture as it reduces both micro-

program size and save-restore time. Conventional register-save schemes

are inappropriate due to the relatively small register complement in

microprocessors, the high interrupt rate (virtually all kernels are executed

in response to device requests), and the relatively small size of most

kernels.

.4n interrupt disable bit is included in the microinstruction word for

tine-critical sequences of instructions. In addition, the priority scheme

protects higher speed devices from being delayed by slower ones.

however, it is expected that hard-wired logic will be used to implement

time-critical functions utilizing the ease in switching between logic and

microinstruction kernels inherent in this architecture.

Generally,

Specific Implementation Characteristics

Although specific details of the implementation are not critical to

the microprocessor architecture presented herein, they are discussed

briefly as one example of its utilization. Intel 3000 series components

were used to build a prototype system to serve as a display controller

-12-

.

for the Tektronix 4014 graphics terminal.

include an interface to the 4014, a floppy disk controller, a serial inter-

face to a host computer, and a multiply-divide unit. The system is capable

Devices connected to the processor

of receiving segmented images over a serial communication line from a host

computer, massaging this display data into a compact form, storing it on the

disk unit, and displaying the images with three-dimensional translation,

rotation, and scaling in both the store and refresh modes of the 4014.

Functions performed by the microinstruction kernels ranged from single

instruction read character and store in memory to using the multiply-divide

unit to multiply four by four matricies for coordinate transformation.

Idiosyncracies of the Intel 3000 components permitted a bit in the micro-

instruction word, shown in Figure 3 , which disables the arithmetic units so

that non-destructive tests may be performed. In addition, deficiencies in

the conditional branch characteristics required bits specifying branch on

carry-in and carry-out.

VI. Advantages of this Architecture

The computer architecture described in the previous sections is intended

to provide an approach to simplifying digital logic unit design.

feature is the incorporation of a high speed microprocessor to replace

portions of the digital logic chain with sequences of programmable micro-

instructions. When properly applied, this will reduce the package count,

wiring complexity, power consumption, and therefore overall system cost.

Its major

In applications where timing characteristics permit, multiple devices

can draw on a single microprocessor for logic replacement. In addition

t o the obvious cost and complexity reduction befefits, this significantly

-13-

simplifies the intra-device communication problems.

can serve as a buffer to mask the effects of differing device speeds.

Internal processor registers can be used to maintain a single copy of

interlock and device communication controls, Perhaps most significant,

the seriel nature of the microprocessor can reduce device race-condition

conflicts and serve to isolate the devices for debugging.

Scratchpad memory

Naturally, the usefulness of including a microprocessor in a digital

design will depend on the extent to which it can perform logic functions

required by the design. Arithmetic and shift operations, common within

these processor elements, easily replace hard-wired logic causing signi-

ficant reduction of space consuming data path wiring. Temporary storage

of data and control information, simplified by the processor's internal

registers and scratchpad memory, is another candidate for logic replacement.

In addition, the processor's ability to control the device sequencing using

device control bits and updating the interrupt vector to point to differ-

ent kernels (states) can significantly increase design flexibility and

reduce re-wiring during the debug process.

.a

A final advantage involves simplification of the hard-wired logic debug-

ging. Since, within this architecture, the processor kernels are interacting

with the device at various states in the logic chain, test programs can

be written to repetitively activate isolated portions of the logic.

allows modular debugging and provides repetitive signals necessary for

good oscilloscope traces.

This

V I I . A Note on Speed

In the preceeding sections, specific timing characteristics have been

-14-

avoided as they do not directly effect the architecture presented. The

microprocessor system implemented as an example has a basic instruction

time of 300-nanoseconds with an additional 200-nanoseconds required for

memory reference instructions. That speed limitation is largely due to

characteristics of the Intel 3000 elements and implies a minimum interrupt

service time of one microsecond. (This includes one memory reference

instruction to read the vector address, one non-memory reference instruc-

tion branch to the kernel, and execution of the first instruction in the

kernel.) This example could therefore sustain megacycle request bursts

and approximately 250,000 processor requests per second assuming ten to

twenty instruction kernels. This seems adequate for most logic systems,
-

and has proven so for the graphics display processor application.

The real timing issue, however, is not absolute speed but rather

the relative speed of the processor compared to available hard-wired

logic. Assuming equivalent technologies, the speed difference will

depend on the overhead in gate levels necessary to provide multiple func-

tions within the microprocessors. Evidence suggests (1) that this speed

reduction (or processor complexity) factor is fifteen to twenty. The

nicroprocessor architecture described herein is oriented toward inter-

leaving kernel execution and hard-wired logic. The speed factor implies

that the processor will be usable for those functions in the logic chain

where the design timing requirement is at least twenty times slower than

the basic logic time necessary to perform the function.

V ' T I T . Summary

A microprocessor-based system architecture has been presented for the

design of digital devices. It is centered around the interconnection of

-15-

the microprocessor and digital devices in such a way that various portions

of the digital logic chain can be replaced with sequences of microinstruc- rn

tions. Where multiple devices are augmented with a single processor, the *

architecture provides a very convenient interface between them. A proto-

type graphics display controller was built using Intel 3000 series micro-

processor elements which has demonstrated the viability of the architecture

for realistic digital design problems.

IX. References

1. J. Rattner, J. C. Comet, M. E. Holt, Jr., "Bipolar LSI Computing
Elements Usher in New Era of Digital Design," Electronics, pp.89-96,
September, 1974.

2 . S. J. Bailey, "Microprocessor: Candidate for Distributed Computing
Control," Control Engineering, Vol. 21, No. 3, pp. 40-44, March, 1974.

3 . M. E. Hoff, Jr., "New LSI Components," 6th IEEE Computer Society
International Conference Digest, pp. 141-143, December, 1972.

4 . A . J. Weissberger, "Distributed Function Microprocessor Architecture,"
Computer Design, November, 1974.

.
0

I -16-

